Enols, Enolates, and More #2: Practicing Aldol, Michael Add., & Robinson Rxns

Yo, gang. Okay, so these 4 reactions (Aldol Rxn, Aldol Rxn with Condensation, Michael Addition, and Robinson Annulation) scared the hell out of me when I was going through O Chem 2. Yes, they are complex, and yes they are challenging. However, as long as you can remember the relationships we highlighted for each reaction and stick to your enol/enolate fundamentals, I guarantee you'll quickly nail these reactions down. I will say, like I did in the last video, these take practice to get good at—but so did a lot of other things in O Chem, and we've always made it through. So let's work hard, master these reactions, and charge onward ⁽ⁱ⁾.

Let's step through each reaction, and I'll rehash all of the important aspects of each one as we go through them.

1.) Aldol Rxn (Basic Condition)

- If heat is added in, the aldol will proceed on to the condensation product. If no heat is added after forming the aldol, the reaction will stop at the aldol product.
- In any aldol product, you'll see a **1,3 hydroxy carbonyl relationship** AKA a carbonyl and an alcohol will be 3 carbons away from each other.
- If heat is added in, the –OH will be driven off, and a double bond will be formed to form a 4-atom conjugated system with the double bond and the carbonyl (that's the relationship to look for). That's called an **enone**.
- This is in **basic conditions**, so we're working with enolates (remember when to form the Kinetic/Thermo enolate, if appropriate).

3.) Heat

2.) Aldol Rxn with Condensation (Acidic Condition)

- This is performed in acidic environments, so **enols** are the nucleophile we're working with.
- Enols are less nucleophilic than enolates, so to make the reaction more favorable and drive it to completion, heat must be added in—the condensation product is **always** obtained.
- Remember the relationship the condensation product will have: We'll see an **enone**, a 4-atom conjugated system that includes the carbonyl and the 2 carbons in the double bond (exactly the same as an aldol condensation in basic conditions)

3.) Heat

3.) Michael Addition

- In a Michael Addition, we are attacking the partially positive carbon in an **enone**. We know there is a partial positive charge on that carbon from resonance.
- We need a "soft" nucleophile (like an **enolate**, **enamine**, or a **cuprate**) to do a Michael Addition (attack in a 1,4 manner, right?). If we had something like a Grignard (a "hard" nucleophile), it would do a 1,2-addition and just attack the carbonyl carbon.
- Relationships to look for:
 - When an enolate/enamine attacks: You end up with a 1,5-dicarbonyl (2 carbonyls 5 carbons away from each other)
 - When a cuprate attacks: You have the original carbonyl still intact, and you've added some carbon piece attached to the partially positive carbon 4 atoms away from the carbonyl carbon

And remember, when making cuprates, you need twice as much organolithium than copper, whether that means 2 RLi + CuX OR RLi + 0.5 CuX

(Last one, give me just a little more effort/focus/hard work then we're done ^(C))

4.) Robinson Annulation

- Believe it or not, a Robinson Annulation is nothing more than a Michael Addition, a small rearrangement, and then an intramolecular aldol condensation (in a basic environment).
- An annulation is a process **that creates a ring**, and in the Robinson Annulation a 6-membered ring is always made.
- You need to have an **enone** and <u>something that has 1 or 2 carbonyls</u> to become an **enolate** and attack the enone.
- There are 2 relationships you will see: The **1,5-dicarbonyl** (from the Michael Addition) and an **enone** (from the aldol condensation).
- Personally, I think it's best to arrange your pieces like I have them in the example below (people may not always be nice and give you them like they're shown below)

In my mind, there are 2 types of questions for a Robinson Annulation:

- 1.) You are given the enone and enolate precursor, and you have to predict the final Robinson product.
- 2.) You are given the final Robinson product, and you come up with the enone and enolate precursor that made that product.

Strategy for 2.)

- Like we talked about, find the enone and make a "cut" in the middle of the double bond.
- Locate the the carbonyl that is **not** a part of the enone, go to its alpha carbon closest to the enone and make a "cut" between that alpha carbon and the carbon its bonded to (not that one in the enone)

